Search results for " Banach space"

showing 10 items of 21 documents

A best proximity point approach to existence of solutions for a system of ordinary differential equations

2019

We establish the existence of a solution for the following system of differential equations (y x ′′((t t ) ) = = g f ((t t ,y x ((t t )) )) ,y x ((t t 0 0) ) = = x x *** in the space of all bounded and continuous real functions on [0, +∞[. We use best proximity point methods and measure of noncompactness theory under suitable assumptions on f and g. Some new best proximity point theorems play a key role in the above result.

System of differential equationsBest proximity point (pair)Settore MAT/05 - Analisi MatematicaStrictly convex Banach spaceCyclic (noncyclic) generalized condensing operator
researchProduct

On the equivalence of McShane and Pettis integrability in non-separable Banach spaces

2009

Abstract We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelof determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.

Discrete mathematicsPettis integralPure mathematicsMcShane integralIntegrable systemApplied MathematicsBanach spaceProjectional resolution of the identitySeparable spaceAbsolutely summing operatorScalarly null functionWeakly Lindelöf determined Banach spacePettis integralEquivalence (measure theory)Continuum hypothesisAnalysisMathematicsProperty (M)Journal of Mathematical Analysis and Applications
researchProduct

Cyclic (noncyclic) phi-condensing operator and its application to a system of differential equations

2019

We establish a best proximity pair theorem for noncyclic φ-condensing operators in strictly convex Banach spaces by using a measure of noncompactness. We also obtain a counterpart result for cyclic φ-condensing operators in Banach spaces to guarantee the existence of best proximity points, and so, an extension of Darbo’s fixed point theorem will be concluded. As an application of our results, we study the existence of a global optimal solution for a system of ordinary differential equations.

Pure mathematicsnoncyclic φ-condensing operatorDifferential equationApplied Mathematics010102 general mathematicsBanach spaceRegular polygonFixed-point theoremlcsh:QA299.6-433Extension (predicate logic)lcsh:Analysis01 natural sciencesMeasure (mathematics)Noncyclic ϕ-condensing operator010101 applied mathematicsstrictly convex Banach spaceOperator (computer programming)Settore MAT/05 - Analisi Matematicabest proximity pairOrdinary differential equationordinary differential equations0101 mathematicsAnalysisOrdinary differential equationMathematicsNonlinear Analysis
researchProduct

Operator martingale decomposition and the Radon-Nikodym property in Banach spaces

2010

Abstract We consider submartingales and uniform amarts of maps acting between a Banach lattice and a Banach lattice or a Banach space. In this measure-free setting of martingale theory, it is known that a Banach space Y has the Radon–Nikodým property if and only if every uniformly norm bounded martingale defined on the Chaney–Schaefer l-tensor product E ⊗ ˜ l Y , where E is a suitable Banach lattice, is norm convergent. We present applications of this result. Firstly, an analogues characterization for Banach lattices Y with the Radon–Nikodým property is given in terms of a suitable set of submartingales (supermartingales) on E ⊗ ˜ l Y . Secondly, we derive a Riesz decomposition for uniform …

Uniform amartPure mathematicsDinculeanu operatorApproximation propertyEberlein–Šmulian theoremBanach spaceRadon–Nikodým propertyFinite-rank operatorBanach manifoldBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým propertySettore MAT/05 - Analisi MatematicaLp spaceC0-semigroupBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým property Uniform amartMathematicsDiscrete mathematicsMathematics::Functional AnalysisBanach spaceApplied MathematicsConvergent martingaleConvergent submartingaleBanach latticeBochner normCone absolutely summing operatorBounded functionAnalysis
researchProduct

Moderately close Neumann inclusions for the Poisson equation

2016

We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.

General Mathematics010102 general mathematicsMathematical analysisGeneral Engineeringmixed problem; moderately close holes; Poisson equation; real analytic continuation in Banach space; singularly perturbed perforated domain; Mathematics (all); Engineering (all)Poisson equation01 natural sciences010101 applied mathematicsmixed problemsingularly perturbed perforated domainEngineering (all)Settore MAT/05 - Analisi MatematicaMathematics (all)0101 mathematicsPoisson's equationmoderately close holesMathematicsreal analytic continuation in Banach space
researchProduct

Global representation and multiscale expansion for the Dirichlet problem in a domain with a small hole close to the boundary

2019

For each pair (Formula presented.) of positive parameters, we define a perforated domain (Formula presented.) by making a small hole of size (Formula presented.) in an open regular subset (Formula presented.) of (Formula presented.) ((Formula presented.)). The hole is situated at distance (Formula presented.) from the outer boundary (Formula presented.) of the domain. Thus, when (Formula presented.) both the size of the hole and its distance from (Formula presented.) tend to zero, but the size shrinks faster than the distance. Next, we consider a Dirichlet problem for the Laplace equation in the perforated domain (Formula presented.) and we denote its solution by (Formula presented.) Our ai…

multiscale asymptotic expansionmulti-scale asymptotic expansionBoundary (topology)01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Domain (mathematical analysis)Settore MAT/05 - Analisi MatematicaSituated[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Dirichlet problem; Laplace operator; multiscale asymptotic expansion; real analytic continuation in Banach space; singularly perturbed perforated domainSmall hole[MATH]Mathematics [math]0101 mathematicsRepresentation (mathematics)MathematicsDirichlet problemDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisA domain010101 applied mathematicssingularly perturbed perforated domainLaplace operatorLaplace operatorAnalysisreal analytic continuation in Banach space
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

2009

[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsFréchet algebraWeighted space of holomorphic functionsHolomorphic functional calculusInfinite-dimensional vector functionSpectrum (functional analysis)Holomorphic functionFrechet algebraBanach manifoldAnalytic manifold structureAnalytic manifoldBergman spaceSymmetrically regular Banach spaceGeometry and TopologyMATEMATICA APLICADAWeighted spaceMathematicsTopology
researchProduct

CHARACTERIZATIONS OF STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS BY PERTURBATION CLASSES

2011

AbstractWe consider a class of operators that contains the strictly singular operators and it is contained in the perturbation class of the upper semi-Fredholm operators PΦ+. We show that this class is strictly contained in PΦ+, solving a question of Friedman. We obtain similar results for the strictly cosingular operators and the perturbation class of the lower semi-Fredholm operators PΦ−. We also characterize in terms of PΦ+ and in terms of PΦ−. As a consequence, we show that and are the biggest operator ideals contained in PΦ+ and PΦ−, respectively.

Pure mathematicsperturbation classes strictly singular and strictly cosingular operators on Banach spacesSettore MAT/05 - Analisi MatematicaGeneral MathematicsPerturbation (astronomy)Strictly singular operatorMathematicsGlasgow Mathematical Journal
researchProduct

Geometric mean and triangles inscribed in a semicircle in Banach spaces

2008

AbstractWe consider the triangles with vertices x, −x and y where x,y are points on the unit sphere of a normed space. Using the geometric means of the variable lengths of the sides of these triangles, we define two geometric constants for Banach spaces. These constants are closely related to the modulus of convexity of the space under consideration, and they seem to represent a useful tool to estimate the exact values of the James and Jordan–von Neumann constants of some Banach spaces.

Unit sphereUniformly non-square Banach spacePure mathematicsApplied MathematicsMathematical analysisBanach spaceUniformly convex spaceBanach manifoldModulus of convexitySpace (mathematics)Normal structureConvexityGeometry of normed spacesInterpolation spaceLp spaceAnalysisNormed vector spaceMathematicsJournal of Mathematical Analysis and Applications
researchProduct